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One of  the themes of  higher algebraic K-theory is that there is often a connection 
between apparently unrelated topics in algebra and topology. Such is particularly 
the case between matrix groups over finite fields and certain topological spaces 
related to classification of  vector bundles and spherical fibrations. This was first 
realized by Quillen [10, 11] and was systematically explored in our monograph [6]. 
In this paper we continue in this vein by establishing a connection between the 
process of  changing a quadratic form on a vector space over a finite field and a 
certain map A : BO ~ SO related to Bott periodicity. 

To be more precise: Let V be a finite dimensional vector space over ~q (q odd) 
with non-degenerate quadratic form Q. Let O(V,Q)  denote the corresponding 
orthogonal group. Let /.t ~ ~q be a nonsquare. Then O(V, Q) can be regarded as 
operating on (V,/~Q) thus inducing a homomorphism O(V,Q)- - ,O(V,  pQ).  This 
process defines an infinite loop map • : F - , F o n  the infinite loop space F obtained 
from the orthogonal groups over ~:q (see Section 1). This map ¢~ was instrumental in 
[6] in the study of  the homology of  the finite orthogonal groups and homology 
operations in F. In fact, it is the existence of  this automorphism which accounts for 
the essential differences between the orthogonal algebraic K-theory of  D:q and the 
ordinary algebraic K-theory of  ~q studied by QuiUen [11]. 

In view of  the close parallels between algebra and topology already established in 
this situation, one would expect that the map ¢5, arising in this algebraic context, 
should have some interesting geometric interpretation. Moreover, the need to find 
such a geometric interpretation is not merely a matter of  esthetics: although one 
knows the homotopy groups of  F, one can not easily determine the action of  • on 
rr,F. The point is that ¢~ is defined algebraically and is transferred to the geometric 
context by means of  group completion which behaves very badly on homotopy 
groups. 
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The main result of this paper provides such a purely geometric interpretation of  
the map O:F--,F. In [6; III Th.3.1d] we showed that F is equivalent as an infinite 
loop space to JO(q), the homotopy fiber of 

~,q- l 
BO , BSO. 

Let r,/~, A be defined by the fibration sequences 

r ,8 ~ q - I  
SO , JO(q) , BO , BSO, (1) 

O A 
OSO = O/U , BU , BO , SO, (2) 

where Q is realification. Localizing away from p, ~u q -  1 and hence p, r are infinite 
loop maps. On the other hand it is well known that (2) is part of  a periodic infinite 
loop space fibration involved in Bott periodicity. (The map A has various other 
interpretations. It can also be described as the adjoint of  

,~^! ® 
S'A BO , BOA BO , BO 

where r/is the generator of rt~BO = rr~. Thus A is often called r/or simply the Bott 

map.) 

Theorem A. As an infinite loop map, 

O = l + r o d o f l .  

Our second result relates the action of  ¢~ on JO(q) to group representations 
invariant under ~uq. Let G be a finite group and let RO(G), R(G) denote the real and 
complex representation rings of  G. Quillen [10] has shown that 

l~(G)~'q-~ [BU, JU(q)] 

where JU(q) is the fibre of ~q- l : BU--, BU. The real case is more delicate. 

Theorem B. ~,O(G)~'q= [BG, JO(q)] ~ i f  some odd power o f  ~q acts idempotently on 
RO(G).  

Here we are using superscripts to denote invariants and subscripts to denote 
coinvariants. The hypothesis of  Theorem B is satisfied if the exponent of  G divides 
qS_ 1 for some odd s. We shall show that some hypothesis on ~u q is necessary in 
Theorem B, by exhibiting a dihedral group for which the conclusion of  Theorem B 
does not hold. 

As corollaries of  Theorem A we have: 

Corollary C. 0 2 =  1, 2¢)=2 as infinite loop space maps. 
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Corollary D. qB,: tt,(JO(q))--*rr,(JO(q)) is the identit:v except for  n = S k  + I, in 
which case 

where rts, + l(JO(q)) = Z/2  09 Z/2 is generated by tie, ltk where qk ~ im r ,  = Z/2 and 
B,(l~k) generates risk + n BO = U 2 .  

In Section 1 we recall the definition of  4' and prove Theorem A; Corollaries C 
and D follow easily. Section 2 is devoted to the proof  of  Theorem B. 

All homology groups are taken with coefficients in Z/2 unless expressly stated to 
the contrary. 

1. Definition of ~ and the proof of Theorem A 

Before giving the proof  of  Theorem A, we briefly recall the group theoretic 
definition of  ~ from [6; II 3.12, 4.13]. This is equivalent to but more concrete than 
the definition given in the Introduction. Let O,(Fq) denote the group of  orthogonal 
n x n  matrices over 0:q, i.e. matrices ,4 over F¢ satisfying A A t = I , .  The classifying 
spaces BO,(F¢) form a monoid 

M= Lt BO.(F 0 
n~O 

under Whitney sum 

BO.(Fq) x BO,. (0:q)-+ BO. ÷,.(Fq). 

Moreover, ~ B M  is an infinite loop space whose zero component we denoted by 
F=FoBO(F¢) in [6; II 3.1]. It is on F that we shall first define ~ : F-~F. To this end 
choose a, b ~ Fq such that a 2 + b 2 is not a square (in the topologically significant case 
q ~  +3 mod 8, a = b =  1 is a suitable choice since 2 is not a square). Let C=  (-b a ~). 
C,  = (~),.~ ~ C and define the outer automorphism 

+~.: O2.(0+)-+ 02.(0:+) 
by 

~.(A) = C.ACl n for A e O:.(F+). 

Clearly ~.+m(A~B)=~.(A)~m(B) for AEO2.(~:q), BeO2m(~:q). In fact, it 
follows from May's theory of infinite loop spaces [8] that the resulting maps 
B~ .  • BO2n(~:q)--* BO2n(~q) can be assembled to give an infinite loop map 

~ : F ~ F .  

In [6; III 3. ld] we have constructed an equivalence of  infinite loop spaces 

2 : F -~  JO(q). 
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By an abuse o f  notation we shall also denote by 

as : JO(q) ~ JO(q) 

the composite infinite loop map 2asA-I 

Corollary D asserts that on homotopy groups a s -  l is usually zero. On homology 
groups, however a s -  l is highly nontrivial as we shall now. According to [6; I 7.1] 
the homology of  JO(q) can be computed from the fibration 

SO r # ' J O ( q )  ~ BO 
a s  

H.(JO(q))=Z/2[01,02 . . . .  ] ® E [ a ~ , a 2  . . . .  ] 

where ak = r , (uD,  f l . (Ok) = ok, and 

H, (SO)  = E [ u l ,  u z . . . .  ], H , (BO)  = Z/2[01 ,  Oz . . . .  ]. 

In [6; IV 3.2] we computed 

(as - l ) . ( aD = 0, (as - I ) . (0D = ak. 

We now turn to the proof  of  Theorem A which occupies the remainder of  this 
section. 

In the diagram 

r B 
SO ' JO(q) 

" I 
\ 

o \ ¢~-1 
\ 

\ 
JO(q) 

-~ B O  

,0(as- 1)= 0 as infinite loop maps since fl factors through Brauer lifting [6; III Th. 
3. I d] and as = 1 after passing to the extension 0:q(]/~ + b2). This follows because con- 
jugation by C is equivalent to conjugation by ( ~ ) - l C  ~ Oz(~:q(V a V ~  ~) ) .  Thus 
there exists an infinite loop map o making the diagram commute. In the diagram 

r # 
SO , JO(q) : BO 

0 ~,-!  (1.1) 

B O ,  " J O ( q )  SO 

we wish to show that an infinite loop map 0 exists and makes the diagram commute. 
This follows from: 

L e m m a  1.2. o r = 0  - s  i n f in i t e  l oop  m a p s .  
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Proof .  We first observe that 2 o = 0  since 

KO-I(JO(q)) ~ KO-I(BO(0:q)) -.- ILm KO-l(BOn(Yq)) 

and KO-~(BG) is a Z/2-module for any finite group G [4]. Thus 

(or) .  = 0 : n,(SO) ® Q--, n . (SO) ® © 

and if f E  [BSO, BSO] is a delooping of  or, i.e. O f =  or, then 

f .  = 0 : n,(BSO) ® Q--, n ,(BSO) ® ©. 

However, Adams has shown that H-maps BSO--,BSO are determined up to 
homotopy by their induced maps on rational homotopy groups [9; V 2.8] and so 
f =  0. It remains to show f =  0 as an infinite loop map, but this follows directly from 
the Madsen-Snai th-Tornehave  result [7, 3.11] that two infinite loop maps 
BSO::tBSO are homotopic (localized at any given prime 1) if they are homotopic as 
ordinary maps, i.e. 

i : [bso, bso] c., [BSO, BSO] 

where bso denotes the connective I2 spectrum whose 0-th space is BSO and i is 
induced by restriction to the 0-th spaces. [] 

We now wish to show that we can complete the diagram 

A c 
BO , SO , SU 

" 1 
\ 

g \ 0 (1.3) 
\ 

\ 

BO 

with an infinite loop map g. Here c is complexification and so A, c is a fibre sequence 
of  infinite loop maps. Let bo, su denote the connected ~ spectra whose O-th spaces 
are BO and SU respectively. Then the existence o f  g follows from: 

Proposition 1.4 [bo, su] = O. 

Lemma 1.5. [BO[n, ~ ] ,  SU] = 0. 

Proof .  For n = 1, 2, 3, 4, K-t(BO[n, a.])= 0 by Atiyah-Segal  [4], since BO[I, ~] = BO, 
BO[2, ~]  = BSO, BO[4, ~]  = BSpin. Following Anderson-Hodgkin  [3] the remain- 
ing cases are proved by induction using the standard fibrations 

K(C,  n - l)---~BO[n + 1, oo] --, BO[n, oo] 

where C =  Z / 2  or 7/(2 ) according to n. In detail, 

K * ( ( K ( 7 / / 2 , n ) ) = O ,  n>_2 by [3; Th. 1], 
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K*(K(Z(2),n))=O, n > 3  by [7; 3.21, 

a n d s o K * B O [ n + l , ~ ] ~ K * B O [ n , m ]  forn>__4. [] 

Proof of Proposition 1.4. Anderson [2; Th. 1] also proves that every stable co- 
homology operation (between the connected forms of complex, real, or symplectic 
K-theories defined on complexes) is represented by a map of spectra which is unique 
up to homotopy. Thus 

[bo, su] = li._m [aO[n, ~],  SU(n, :o11. (1.6) 

By connectivity [BO[n,~],SU]=[BO[n,~],SU[n,~]] and so by Lemma 1.5 
[bo, su] = 0. I-'1 

We can combine diagrams (1.1) and (1.3) to obtain 

r 

SO ' JO(q) 

. / /  lo 
B O ,  JO(q) 

l (1 .7)  

L e m m a  1.8. g~ is a homotopy fibre o f  ~,q- 1 as infinite loop space maps. 

Proof.  First we observe that g is an equivalence. In homology 

r,zl ,g,P,(ok) = (¢' - l),(0k), 

r , / I  , g , ( vD  = ak, 

A ,g,(ok) = uk, 

since r ,  is injective. It is well known that A,(ok) = uk, hence 

g,(uk) = Ok + decomposables 

and g ,  is an isomorphism of  homology algebras. 
Now we use the completion (at 2) of Bousfield-Kan [5] 

X~.g"  

for simple spaces X (see also May [9]). We are forced to consider completions in 
order to circumvent intractable lira I problems, e.g. if ya  denotes the finite sub- 
complexes of Y then 

[r, .t] ~ l~  [r~, ~] 
because lim I =0  in the Milnor sequence 

O--,lim ~ [ZY a, ,g'] - ,  [ Y, R]--,lim [Y% ,g'] --,0. 
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It remains to prove that p o g o (~,q_ 1)= 0 as infinite loop space maps. Consider 
the diagram of completions 

JO(q) = JO(q)" 
B" (~a_ I)" 

' BO" , BSO" 

(~,q- I)" 
BO" , BSO" 

which commutes up to homotopy as a diagram of  infinite loop maps because ~ is a 
linear combination of  Adams operations ~,k, k prime to p (see [7; 2.2]). Thus 

[(~v q -  l)gfl]" = (~u q -  l)'g'fl'=g'(~/q- l ) ' f l ' =  0; 

however, since JO(q) (and thus every delooping of JO(q)) has finite integral 
homology groups, completion is faithful. Thus ( ~ q - l ) o g , 8 = O  as infinite loop 
space maps. [] 

Proof  of  Theorem A. According to (1.7) and Lemma 1.8, 

¢ O - l = r o d  o (g//) 

where gfl is a homotopy fibre of ~ 'q-  I. However, p is some choice of homotopy 
fibre of ~vq- 1 and so gfl is equally as good a choice. This completes the proof of 
Theorem A. [] 

Proof  of Corollary C. The first assertion ~ 2 =  1 was established in [6; 2.13]. As for 
the second assertion, 

KO-~(JO(q)) = KO-~(BO(~:q)) --- li_m KO-~(BOn(~q)) 

~- lim RO'(0n(~:q)) = Z/2-module. 

Thus 2 ( # -  l ) =  0, and similarly for each delooping 2 B n ( ~ -  1)= 0. Since JO(q) has 
finite integral cohomology groups, these null-homotopies give a null-homotopy as 
maps of spectra. [] 

Proof  of  Corollary D. We analyze ¢~- 1 = tAB on homotopy groups. From fibre 
sequence (2) and Bott periodicity we have A , = 0 : n , B O - , n , S O  except in 
dimensions 8k where d ,  : 7/--,Z/2 is reduction mod 2 and in dimensions 8k+ 1 where 
d , :  Z/2.~Z/2. However from fibre sequence (1) of the introduction we have 

ft .  =0 : ng~JO(q) -'* 7rskBO 

and so we are reduced to dimensions 8k + 1. Again by sequence (2) we have 

P . (uD*O,  B.(,TD =0. [] 
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2. Real representations and the proof  of  Theorem B 

Let G be a finite group. The operation of  assigning to each real representation of  
G its associated vector bundle over BG induces a homomorphism 

RO(G) ~ [BG, BOI 

which is compatible with Adams operations tu k. Atiyah and Segal [41 have proved 
that 

RO(G) "--% [BG, BO] 

where completion is taken with respect to powers of  the augmentation ideal I(G) 

(i.e. completion of  the l(G)-adic topology). 
The fibration (1) of  the introduction gives rise to an exact sequence 

r, #, (~,q- 1), 
[BG, SOl " , [BG, JO(q)l - [BG, BO] , [BG, BSO], 

thus 
#. 

[BG, JO(q)] /Im r .  ~ , [BG, BO] ~'q .. , RO(G) "~'q. 

By the definition of  coinvariants 

[BG, JO(q)]~ = [BG, JO(q) l / Im(~  - 1).. 

Thus the proof  of  Theorem B reduces to: 

Proposit ion 2.1. I f  some  odd  p o w e r  o f  gJq acts idempotent ly  on RO(G), then 

Im r .  = Im(~ - l ) . .  

To prepare the proof  of Proposition 2.1, let Q : R ( G )  ~ RO(G) denote realification 
and set 

~g = g/q, A = R O ( G ) / Q R ( G ) ,  R = RO(G). 

It is straightforward to verify (R ' )~= (R~') ", (A~,)'= (A')~, and so we can ignore the 
order of  taking completion and (co-)invariants. Now extending fibration (1) of  the 
introduction one term to the left, we have 

D~- I  r P v/-I 
SO ' SO , JO(q) , BO ' BO. (2.2) 

Lemma 2.3. A~- -  [BG, SOla~.  

A 
Proof .  Atiyah-Segal  [4] prove that BO , SO induces an isomorphism 

A" --, [BG, SOl. 

In order to prove that this map commutes with Adams operations we must show the 
homotopy commutativity of  
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d 
BO , SO 

.4 
BO -~ SO 

The operation A , :  K O ( ' ) - - K O - I ( ' ) = K O ( S I A  ") is well known to be induces by 
smashing with the generator q e ntBO = 7//2. Thus we are reduced to showing the 
commutativity of  

.4,  
KO(.) , KO(SIA .) 

.4,  
KO(')  , KO(SlA ") 

Since ~,(r/)= r/, this follows from the method of  Adams proof  of  Corollary 5.3 of  
[l]. [] 

Let zr:R ~ A  denote projection and let k : A  ¢'~A~, denote the natural map. 

Lemma 2.4. I f  s o m e  odd  p o w e r  o f  ¢/q is idempotent ,  then k~  induces an epi- 

morph i sm 
£:1~-~A~. 

Proof .  Let s be an odd integer for which (~,q)z~= (g~q)s. Suppose a e,4~, and u ~/~ is 
a preimage of  a under the composite epimorphism 

,~ ~ , 4 - " A  ~,. 

Consider the element 

a = (~,q)Su + (¢/q)s+ i u + ... + (~,q)2~-lu. 

Since (¢/q)s is idempotent, ~qa = Q. Hence a ~ .  Moreover 

~I~ ~- ( ~l/q)$ a "~ ( ~l/q) s+ 1(1 ~t" " " "~- ( ~ /q )2s -  i a 

= a + a + . . . + a  

= s a = t I ,  

since A~, is a Z/2  vector space. [] 

P r o o f  o f  Proposi t ion 2.1. Clearly Im(¢~ - I ) ,C  Im r ,  since ¢~- 1 = rAp by Theorem 
A. The opposite inclusion I m ( ~ - l ) , D I m z ,  follows from the commutative 
diagram (see (2.2)) 
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r ,  
A~,---.[BG, SO]rt,v C" , [BG, JO(q)] 

/~ ' - -  [BG, BOIe ,, [BG, JO(q)l 

where k is an epimorphism by Lemma 2.4. This completes the proof  of  Proposition 
2.1 and thus Theorem B. [] 

We conclude with examples showing the necessity of  the idempotence hypothesis 
in Theorem B. This topic will be explored more thoroughly in a forthcoming paper 
by the first author.  

Proposition 2.5. I f  G is a dihedral group o f  order 2 ~, n>_4, then ~O(G)~3~# 
[BG, JO(q)] , .  

Proof .  It follows, from the arguments we used to prove Theorem B, that we need 
only show that 

is not an epimorphism. Moreover, since A~, is a finite 7//2 vector space, the com- 
pletion Av, is attained in a finite number of  stages. Hence it suffices to show that the 
composite 

R~,--, R~,-., A~, 

is not surjective. 
Next we recall some facts about the representation theory of  the dihedral group 

with 2" elements (ef. Serre [12]). Denote by a, b the standard generators, subject to 
the relations 

a 2 = b  2n-x= 1, aba=b -l. 

Then the irreducible characters are given by Table 1 where k = 1, 2, 3 . . . . .  2 n- 2_ 1. 

Table 1 

b s ab* 

X~ 1 1 
,~2 1 -1 
X3 (-1) s (-1) s 
X4 (-1) s (-1) s+l 

O~ (2 cos 2ns-~k_ 2) 0 

Note that all the irreducible characters are real, so RO(G) = R(G). Hence A = R ® 
Z/2. The characters multiply according to Table 2. 
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Table 2 

Xl X2 X3 X4 0l 

X2 X2 Xt X4 X3 O/ 
X3 X3 X4 XI X2 X 2 n - 2 - /  

X4 X4 X3 X2 XI ~ 2 " - 2 - 1  

~k #k Qk ~2n-2-k ~2n-Z-k ~k+l+Qk-I 

To make sense of  the entry in the lower right hand corner, one should note that Loe 
depends only the residue class of  k mod 2 n- 1, that cok = Q-k and that 

~ 0 0 =  X l  -[- X2  , ~02n- 2 .~- X3  "l- X 4 .  

The proof  is completed by the following observations. 

Observation 1. ,4 =A. Hence ,4~,=A~, and it suffices to show that the composite 

Rv'--, R ~A--*A~, 

is not an epimorphism. 
To see this one notes that ,4 =A/N  jr" where jr is the image of  the augmentation 

ideal under R ~ A .  Hence it suffices to show 7 is a nilpotent ideal. This is clear since 
)'is generated by ,~i+,~1, i=2 ,3 ,4  and ~0~, k =  1,2, 3 . . . . .  2 " - 2 -  1 (here g denotes the 
image of  X in A) and 

(2i+,~02 = ,~  +21 = 0, 

#2kn- l ..~ O2n- lk -1- ~ l +,~2 = #O +,~ l +,~2 = O. 

Observation 2. ~u3Xi=X,, i= 1,2,3,4 and {//3~Ok=~O3k. Hence R ~' is free on the basis 

Xi, i=  1,2,3,4 and 

~i, 
g k(mod 2 n - 3 ) 

a< /<2  n-2 

k=1,2 ,4 ,  . . . .  2 n-3. Similarly A~ has a basis [,~i], i=1 ,2 ,3 ,4  and [~k],. k =  
I, 2, 4 . . . . .  2 "-3. (Moreover ~3 has order 2 "-3, an even number.) 

The first statement is obvious from the character formula ( ~ ) ( g ) =  ~(g3). It 
follows that R ~ is free on the traces of  the orbits of  {Xi, Q~} under the action of  ~ 3  
The second two statements now follow from the fact that 3 is a topological 
generator of the dyadic units. 

Now under the map R~'~R--,A~A~,, 

t i k(mod 2 n - 3) 
i~;t<2 n-2 

is sent to (2"-3/k)[Ok]. 
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H e n c e  the  c o k e r n e l  is g e n e r a t e d  by [dk], k =  1,2 ,4  . . . . .  2 " - 4 ,  a n d  the  p r o o f  is 

c o m p l e t e .  [ ]  
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